3582 independent reflections

 $R_{\rm int} = 0.021$

2863 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-[4-(Dimethylamino)benzylideneamino]-2-methylquinazolin-4(3*H*)-one

P. Kumaradhas,^a* G. Sankara Lakshmi,^a B. Sridhar,^b P. Paneer Selvam^c and G. Saravanan^c

^aDepartment of Physics, Periyar University, Salem 636 011, India, ^bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ^cC. L. Baid Metha College of Pharmacy, Thuraipakkam, Chennai 600 096, India

Correspondence e-mail: kumaradhas@yahoo.com

Received 10 September 2007; accepted 26 September 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.149; data-to-parameter ratio = 12.8.

In the title compound, $C_{18}H_{18}N_4O$, the dihedral angle between the quinazoline and benzylidene groups is 54.0 (4)°. In the crystal structure, the molecules associate into centrosymmetric dimers *via* $C-H\cdots O$ interactions.

Related literature

For related literature, see: Alagarsamy et al. (2003, 2004); El-Meligie et al. (2001).

Experimental

Crystal data

 $\begin{array}{l} C_{18}H_{18}N_4O\\ M_r = 306.36\\ \text{Triclinic, }P\overline{1}\\ a = 7.5175\ (10)\ \text{\AA}\\ b = 9.3631\ (13)\ \text{\AA}\\ c = 12.7886\ (17)\ \text{\AA}\\ \alpha = 98.198\ (2)^\circ\\ \beta = 103.259\ (2)^\circ\end{array}$

 $\gamma = 112.517 (2)^{\circ}$ $V = 782.33 (18) \text{ Å}^3$ Z = 2Mo K α radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 296 (2) K $0.21 \times 0.18 \times 0.10 \text{ mm}$

Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: none
9011 measured reflections
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	280 parameters
$wR(F^2) = 0.150$	All H-atom parameters refined
S = 1.03	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
3582 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C18-H18B\cdotsO1^{i}$	0.94 (2)	2.58 (3)	3.379 (2)	143.0 (19)
Symmetry code: (i) $-x$, -y, -z + 1.			

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997), *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2537).

References

- Alagarsamy, V., Murugananthan, G. & Venkateshperumal, R. (2003). Biol. Pharm. Bull. 26, 1711–1714.
- Alagarsamy, V., Rajesh, R., Ramaseshu, M., Vijayakumar, S., Ramaseshu, K. V. & Duraianandakumar, T. (2004). *Biol. Pharm. Bull.* 27, 652–656.
- Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

El-Meligie, S., El-Ansary, A. K., Said, M. M. & Hussein, M. M. M. (2001). Ind. J. Chem. Sect. B, 40, 62–69.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o4293 [doi:10.1107/S1600536807047393]

3-[4-(Dimethylamino)benzylideneamino]-2-methylquinazolin-4(3H)-one

P. Kumaradhas, G. Sankara Lakshmi, B. Sridhar, P. Paneer Selvam and G. Saravanan

Comment

Quinazolin related compounds exhibit multiple medicinal activities, such as analgesic (Alagarsamy *et al.*, 2004), anti-in-flammatory (Alagarsamy *et al.*, 2003), and anticonvulsant (El-Meligie *et al.*, 2001) properties. As part of our studies of these systems, we now present the synthesis and structure of the title compound, (I), (Fig. 1).

In the quinazolin ring, the single bond C—N distances [C8-N2 = 1.385 (2) Å; C7-N2 = 1.398 (2) Å and C3-N1 = 1.387 (2) Å] are almost equal and longer than C14-N4 [1.364 (2) Å]. The non-ring C—N bond distances such as C17-N4 and C18-N4 are significantly, longer than the above C—N distances. These differences are attributed to the different attached groups. As expected, the bridging bond C10-C11 [1.447 (2) Å] is much longer than the C-C distances of the rings in the molecule. The torsion angles N3-N2-C8-C9 and O1-C7-N2-N3 are -7.9 (2)° and 8.3 (2)° respectively. This small angle of bond twist indicate that the bonded atoms are *cis* oriented. In the molecule, the quinazolin ring and the benzylidene group are twisted with each other and the corresponding torsion angle is -178.2 (2)° confirms that the bonds are *trans* oriented. This wide-angle twist indicates that the the groups are significantly rotated and the dihedral angle between the planes is 54.0 (4)°. A small value of the dihedral angle [2.10 (4)°] between the aromatic and quinazolin rings show they are almost coplanar. The quinazolin ring is statistically planar with a maximum deviation of 0.02 (1) Å [C8].

The molecular packing is stabilized by C—H···O hydrogen bonding interactions which result in centrosymmetric dimers (Table 1, Fig. 2).

Experimental

A mixture of 2–methyl benzo(1,3) oxazin–4–one (0.01 mole; 1.61 g) and hydrazine hydrate (0.03 mole; 1.5 g) in ethanol was refluxed for two hours, then *p*-dimethyl amino benzaldehyde (2.24 g) was added. Then the solution was poured into ice cold water. The separated solid was filtered and recrystallized from ethanol and dried in an oven. Yield 73.1%; melting point 412–414 K. Yellow needles of (I) were recrystallized from ethyl acetate solution.

Refinement

All the H atoms were positioned geometrically and their positions and U_{iso} values were freely refined.

Figures

Fig. 1. View of the molecular structure of (I). The displacement ellipsoids are drawn at 50% probability level and H atoms are drawn as spheres of arbitrary radius.

Fig. 2. A centrosymmetric dimer of (I), linked by C—H···O interactions. Atom marked with an asterisk (*) are at the symmetry position (-x, -y, 1-z).

$\label{eq:2.1} 3-[4-(Dimethylamino)benzylideneamino]-2-methylquinazolin-4(3H)-one$

Crystal data	
C ₁₈ H ₁₈ N ₄ O	Z = 2
$M_r = 306.36$	$F_{000} = 324$
Triclinic, PT	$D_{\rm x} = 1.301 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.5175 (10) Å	Cell parameters from 50 reflections
<i>b</i> = 9.3631 (13) Å	$\theta = 1.7 - 28.0^{\circ}$
c = 12.7886 (17) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 98.198 \ (2)^{\circ}$	T = 296 (2) K
$\beta = 103.259 \ (2)^{\circ}$	Block, yellow
$\gamma = 112.517 \ (2)^{\circ}$	$0.21\times0.18\times0.10~mm$
$V = 782.33 (18) \text{ Å}^3$	
Data collection	
Bruker APEXII CCD	R = 0.021

diffractometer	$R_{\rm int} = 0.021$
ω scans	$\theta_{\text{max}} = 28.0^{\circ}$
Absorption correction: none	$\theta_{\min} = 1.7^{\circ}$
9011 measured reflections	$h = -9 \rightarrow 9$
3582 independent reflections	$k = -12 \rightarrow 12$
2863 reflections with $I > 2\sigma(I)$	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.150$ S = 1.033582 reflections 280 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

All H-atom parameters refined

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{min} = -0.18 \text{ e} \text{ Å}^{-3}$ Extinction correction: none

 $w = 1/[\sigma^2(F_0^2) + (0.0824P)^2 + 0.0881P]$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	-0.0239 (3)	0.7144 (2)	0.16094 (15)	0.0761 (5)
C2	0.1029 (2)	0.63717 (16)	0.16193 (11)	0.0590 (4)
C3	0.2288 (3)	0.66170 (16)	0.09561 (11)	0.0628 (4)
C4	0.2239 (4)	0.7645 (2)	0.02596 (14)	0.0830 (5)
C5	0.0992 (4)	0.8384 (2)	0.02555 (17)	0.0969 (7)
C6	-0.0240 (4)	0.8146 (2)	0.09299 (16)	0.0937 (7)
C7	0.0971 (2)	0.52499 (16)	0.23043 (11)	0.0574 (3)
C8	0.3481 (2)	0.48483 (17)	0.15228 (11)	0.0584 (3)
C9	0.4731 (3)	0.3951 (3)	0.14777 (16)	0.0759 (5)
C10	0.25148 (19)	0.35813 (15)	0.37531 (11)	0.0494 (3)
C11	0.25379 (18)	0.23922 (15)	0.43582 (10)	0.0468 (3)
C12	0.2940 (2)	0.27515 (16)	0.55046 (11)	0.0513 (3)
C13	0.3045 (2)	0.16600 (17)	0.61039 (11)	0.0536 (3)
C14	0.27102 (18)	0.01191 (15)	0.55708 (10)	0.0482 (3)
C15	0.2322 (2)	-0.02347 (16)	0.44130 (11)	0.0539 (3)
C16	0.2239 (2)	0.08687 (16)	0.38322 (11)	0.0532 (3)
C17	0.3175 (4)	-0.0651 (3)	0.73240 (15)	0.0841 (6)
C18	0.2354 (3)	-0.25892 (19)	0.55635 (16)	0.0678 (4)
N1	0.3542 (2)	0.58551 (16)	0.09249 (10)	0.0669 (4)
N2	0.22998 (18)	0.45569 (13)	0.22242 (9)	0.0528 (3)
N3	0.22249 (19)	0.32720 (13)	0.27105 (9)	0.0566 (3)
N4	0.27461 (19)	-0.10011 (14)	0.61397 (10)	0.0593 (3)
01	-0.01214 (18)	0.49096 (15)	0.28877 (10)	0.0773 (4)
H1	-0.117 (3)	0.691 (3)	0.2099 (18)	0.104 (7)*
H4	0.315 (3)	0.783 (2)	-0.0153 (17)	0.085 (6)*

supplementary materials

Н5	0.097 (4)	0.905 (3)	-0.023 (2)	0.119 (7)*
Н6	-0.120 (4)	0.861 (3)	0.0914 (19)	0.110 (7)*
H9A	0.385 (4)	0.279 (3)	0.1317 (19)	0.114 (7)*
H9B	0.575 (3)	0.424 (2)	0.2179 (19)	0.097 (6)*
H9C	0.532 (3)	0.415 (2)	0.0904 (17)	0.089 (6)*
H10	0.279 (2)	0.4627 (18)	0.4204 (12)	0.057 (4)*
H12	0.313 (2)	0.378 (2)	0.5871 (13)	0.063 (4)*
H13	0.333 (2)	0.1965 (19)	0.6874 (15)	0.072 (5)*
H15	0.211 (2)	-0.125 (2)	0.4051 (13)	0.068 (4)*
H16	0.196 (2)	0.0572 (19)	0.3046 (14)	0.070 (4)*
H17A	0.243 (4)	-0.015 (3)	0.757 (2)	0.135 (10)*
H17B	0.455 (4)	0.021 (3)	0.766 (2)	0.126 (8)*
H17C	0.314 (4)	-0.156 (3)	0.757 (2)	0.118 (7)*
H18A	0.097 (3)	-0.314 (2)	0.4942 (16)	0.088 (5)*
H18B	0.236 (4)	-0.319 (3)	0.6088 (19)	0.116 (7)*
H18C	0.336 (3)	-0.255 (2)	0.5189 (16)	0.093 (6)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0992 (12)	0.0659 (9)	0.0662 (9)	0.0470 (9)	0.0123 (9)	0.0144 (7)
C2	0.0747 (9)	0.0475 (7)	0.0453 (7)	0.0256 (6)	0.0048 (6)	0.0090 (5)
C3	0.0849 (10)	0.0481 (7)	0.0441 (7)	0.0242 (7)	0.0071 (6)	0.0122 (5)
C4	0.1266 (16)	0.0663 (10)	0.0574 (9)	0.0415 (11)	0.0240 (10)	0.0282 (8)
C5	0.158 (2)	0.0683 (11)	0.0683 (11)	0.0602 (13)	0.0138 (12)	0.0297 (9)
C6	0.1408 (19)	0.0795 (12)	0.0722 (11)	0.0703 (13)	0.0122 (12)	0.0210 (9)
C7	0.0660 (8)	0.0531 (7)	0.0513 (7)	0.0270 (6)	0.0121 (6)	0.0145 (6)
C8	0.0695 (8)	0.0597 (8)	0.0453 (7)	0.0268 (7)	0.0162 (6)	0.0168 (6)
C9	0.0916 (12)	0.0981 (14)	0.0661 (10)	0.0562 (11)	0.0376 (10)	0.0384 (10)
C10	0.0482 (7)	0.0472 (6)	0.0506 (7)	0.0196 (5)	0.0122 (5)	0.0143 (5)
C11	0.0436 (6)	0.0477 (6)	0.0490 (6)	0.0191 (5)	0.0128 (5)	0.0156 (5)
C12	0.0546 (7)	0.0479 (7)	0.0504 (7)	0.0222 (6)	0.0152 (5)	0.0111 (5)
C13	0.0584 (7)	0.0575 (7)	0.0439 (7)	0.0243 (6)	0.0145 (5)	0.0143 (5)
C14	0.0422 (6)	0.0523 (7)	0.0537 (7)	0.0211 (5)	0.0160 (5)	0.0202 (5)
C15	0.0621 (8)	0.0482 (7)	0.0547 (7)	0.0262 (6)	0.0193 (6)	0.0139 (6)
C16	0.0614 (8)	0.0533 (7)	0.0451 (7)	0.0248 (6)	0.0158 (6)	0.0140 (5)
C17	0.1134 (16)	0.0731 (11)	0.0595 (9)	0.0356 (12)	0.0155 (10)	0.0306 (8)
C18	0.0755 (10)	0.0576 (8)	0.0822 (11)	0.0337 (8)	0.0294 (9)	0.0308 (8)
N1	0.0867 (9)	0.0676 (7)	0.0515 (7)	0.0335 (7)	0.0240 (6)	0.0259 (6)
N2	0.0647 (7)	0.0482 (6)	0.0464 (6)	0.0245 (5)	0.0152 (5)	0.0176 (4)
N3	0.0719 (7)	0.0502 (6)	0.0534 (6)	0.0290 (5)	0.0197 (5)	0.0218 (5)
N4	0.0667 (7)	0.0593 (7)	0.0600 (7)	0.0306 (6)	0.0209 (5)	0.0269 (5)
01	0.0864 (8)	0.0928 (8)	0.0825 (8)	0.0533 (7)	0.0408 (6)	0.0441 (6)

Geometric parameters (Å, °)

C1—C6	1.367 (3)	C10—H10	0.982 (15)
C1—C2	1.399 (2)	C11—C12	1.3900 (18)
C1—H1	1.03 (2)	C11—C16	1.3963 (18)

C2—C3	1.387 (2)	C12—C13	1.3768 (18)
C2—C7	1.4552 (19)	C12—H12	0.950 (16)
C3—N1	1.387 (2)	C13—C14	1.4044 (19)
C3—C4	1.406 (2)	C13—H13	0.934 (17)
C4—C5	1.362 (3)	C14—N4	1.3641 (16)
C4—H4	0.939 (19)	C14—C15	1.4054 (19)
C5—C6	1.384 (3)	C15—C16	1.3673 (18)
С5—Н5	0.95 (2)	С15—Н15	0.931 (16)
С6—Н6	0.97 (2)	С16—Н16	0.955 (17)
C7—O1	1.2171 (18)	C17—N4	1.435 (2)
C7—N2	1.3976 (19)	C17—H17A	0.94 (3)
C8—N1	1.2899 (17)	С17—Н17В	0.98 (3)
C8—N2	1.3848 (18)	С17—Н17С	0.94 (3)
C8—C9	1.486 (2)	C18—N4	1.447 (2)
С9—Н9А	1.00 (2)	C18—H18A	1.03 (2)
С9—Н9В	0.96 (2)	C18—H18B	0.94 (2)
С9—Н9С	0.95 (2)	C18—H18C	0.98 (2)
C10—N3	1.2718 (17)	N2—N3	1.4194 (14)
C10—C11	1.4467 (17)		
C6—C1—C2	119.2 (2)	C13—C12—C11	121.83 (12)
C6—C1—H1	122.1 (12)	C13—C12—H12	120.1 (9)
C2—C1—H1	118.6 (12)	C11—C12—H12	118.0 (9)
C3—C2—C1	120.97 (14)	C12—C13—C14	120.87 (12)
C3—C2—C7	119.54 (13)	C12—C13—H13	118.4 (10)
C1—C2—C7	119.46 (15)	C14—C13—H13	120.7 (10)
N1—C3—C2	122.88 (12)	N4—C14—C13	122.11 (12)
N1—C3—C4	118.69 (16)	N4—C14—C15	120.78 (12)
C2—C3—C4	118.40 (16)	C13—C14—C15	117.12 (11)
C5—C4—C3	120.0 (2)	C16—C15—C14	121.21 (12)
C5—C4—H4	123.4 (12)	C16—C15—H15	120.8 (10)
C3—C4—H4	116.5 (12)	C14—C15—H15	118.0 (10)
C4—C5—C6	121.16 (17)	C15—C16—C11	121.76 (12)
C4—C5—H5	118.5 (15)	C15—C16—H16	118.2 (10)
С6—С5—Н5	120.4 (15)	C11-C16-H16	120.1 (10)
C1—C6—C5	120.2 (2)	N4—C17—H17A	112.6 (17)
С1—С6—Н6	116.6 (14)	N4—C17—H17B	107.8 (15)
С5—С6—Н6	123.0 (14)	H17A—C17—H17B	100 (2)
O1—C7—N2	121.87 (12)	N4—C17—H17C	109.6 (15)
O1—C7—C2	124.86 (14)	H17A—C17—H17C	117 (2)
N2—C7—C2	113.27 (13)	H17B—C17—H17C	108 (2)
N1—C8—N2	123.02 (13)	N4—C18—H18A	111.7 (10)
N1—C8—C9	119.66 (14)	N4—C18—H18B	107.7 (14)
N2—C8—C9	117.33 (13)	H18A—C18—H18B	109.7 (18)
С8—С9—Н9А	109.1 (14)	N4—C18—H18C	111.0 (12)
C8—C9—H9B	111.3 (12)	H18A—C18—H18C	105.4 (16)
H9A—C9—H9B	107.1 (18)	H18B—C18—H18C	111.3 (18)
C8—C9—H9C	108.8 (12)	C8—N1—C3	117.79 (13)
H9A—C9—H9C	109.7 (18)	C8—N2—C7	123.41 (11)
Н9В—С9—Н9С	110.8 (18)	C8—N2—N3	115.22 (11)

supplementary materials

N3—C10—C11	120.72 (12)	C7—N2—N3	120.37 (11)
N3—C10—H10	123.6 (8)	C10—N3—N2	115.05 (11)
C11—C10—H10	115.6 (8)	C14—N4—C17	121.49 (13)
C12—C11—C16	117.20 (11)	C14—N4—C18	120.79 (13)
C12-C11-C10	120.75 (12)	C17—N4—C18	117.72 (14)
C16—C11—C10	122.01 (11)		
C6—C1—C2—C3	0.4 (2)	C13—C14—C15—C16	-1.1 (2)
C6—C1—C2—C7	-177.34 (15)	C14-C15-C16-C11	0.1 (2)
C1—C2—C3—N1	-178.80 (13)	C12-C11-C16-C15	0.5 (2)
C7—C2—C3—N1	-1.1 (2)	C10-C11-C16-C15	178.05 (12)
C1—C2—C3—C4	-0.9 (2)	N2-C8-N1-C3	-3.0 (2)
C7—C2—C3—C4	176.80 (13)	C9—C8—N1—C3	177.34 (15)
N1—C3—C4—C5	178.65 (16)	C2-C3-N1-C8	1.7 (2)
C2—C3—C4—C5	0.7 (3)	C4—C3—N1—C8	-176.17 (14)
C3—C4—C5—C6	0.1 (3)	N1-C8-N2-C7	3.9 (2)
C2—C1—C6—C5	0.4 (3)	C9—C8—N2—C7	-176.45 (15)
C4—C5—C6—C1	-0.7 (3)	N1—C8—N2—N3	172.45 (12)
C3—C2—C7—O1	-177.59 (14)	C9—C8—N2—N3	-7.92 (19)
C1—C2—C7—O1	0.1 (2)	O1—C7—N2—C8	176.29 (13)
C3—C2—C7—N2	1.63 (18)	C2C7	-2.96 (19)
C1—C2—C7—N2	179.36 (13)	O1—C7—N2—N3	8.3 (2)
N3-C10-C11-C12	177.24 (12)	C2C7N3	-170.92 (11)
N3-C10-C11-C16	-0.3 (2)	C11—C10—N3—N2	-178.16 (10)
C16-C11-C12-C13	0.07 (19)	C8—N2—N3—C10	132.15 (13)
C10-C11-C12-C13	-177.54 (11)	C7—N2—N3—C10	-58.94 (16)
C11—C12—C13—C14	-1.2 (2)	C13—C14—N4—C17	-1.4 (2)
C12-C13-C14-N4	-178.04 (11)	C15-C14-N4-C17	178.90 (16)
C12-C13-C14-C15	1.67 (19)	C13—C14—N4—C18	178.72 (13)
N4-C14-C15-C16	178.58 (12)	C15-C14-N4-C18	-1.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C18—H18B···O1 ⁱ	0.94 (2)	2.58 (3)	3.379 (2)	143.0 (19)
C				

Symmetry codes: (i) -x, -y, -z+1.

Fig. 2

